
This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

The DevOps movement has pushed for and succeeded in breaking down barriers and silos
within organizations dividing teams into specialized functions of Development and Operations.
DevOps enables organizations that embrace the movement and culture to be more competitive
by enabling faster, more reliable software releases by leveraging automation to replace manual
processes involved in shipping software.

A side effect of this speed is that security tools and processes need to move at the same pace to
keep up. The idea driving DevSecOps or Rugged DevOps is to bake the security testing of the
application under development into the process used to ship it. Automating these processes
takes people out of the chain and puts them in a different capacity. Instead of people being the
process, tools, and automation are the process, and people monitor and respond to process
failures. Thus, combining the strengths of both computers and people.

The image below lists some of the tools leveraged to automate a DevOps pipeline's security
testing and auditing.

OPCITO TECHNOLOGIES

DevSecOps
Building Security Into
Your DevOps Processes

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Some types of tools that exist already for security testing are:

Cloud infrastructure – Tools to scan your cloud infrastructure and configuration of resources
against best practices for that cloud. Examples are Azure Advisor and evident.io
Automated security tests – There are now frameworks that let you write security tests for
applications just like the traditional unit and integration tests. Gauntit is a framework that is
gaining popularity for building and automating tests like these.
Static code analysis – This set of tools can scan your codebase and open-source libraries and
find potential vulnerabilities. VeraCode is a popular tool for performing these kinds of analyses
Runtime security analysis – This set of tools runs alongside/within your application in
production and can help identify and prevent security issues in real-time. Contrast Security is
one such tool that provides these features
Vulnerability scanning for Containers – Tools like Clair from CoreOS help you to scan your
container images for vulnerabilities. The API interface for Clair makes it easy to add this to
custom-build pipelines.

You can look at https://github.com/devsecops/awesome-devsecops#tools for a more
comprehensive list of DevSecOps tools for each stage of the SDLC.

Best Practices for Implementing DevSecOps in Your Organization

Automated and Programmable Security Controls - Just like DevOps relies on fast short feedback
loops, DevSecOps also uses short feedback loops with the difference of having continuous
monitoring and analytics at the core of both the development and operations ends.

Information security architects must try to incorporate security controls with a minimum to no
manual configuration at every stage of the cycle so that they are transparent and don’t impede
the hard-won agility DevOps brings while managing risk and regulatory compliance needs. This
means that any security controls added need to be capable of automation to fit into DevOps
toolchains. Automation brings in two benefits immediately. Automation reduces the risk of

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Fully API-enable their platform services and expose 100% of functionality via API
Provide explicit support for common DevOps toolchain environments, such as Chef, Puppet,
and similar automation tools
Provide explicit support for containers and container orchestration and management systems
(which are not necessary for DevSecOps, but help streamline service delivery from
development into production).

Specific best practices:

Choose security and management vendors who:

Connect tooling to existing IAM systems to pull down identities and permissions, e.g., LDAP
and Active Directory. Allow enforcement of security policies in tools and monitor all access to
tooling and activities.
Define unique roles for environments, e.g., development vs. production. An ideal situation is
where all changes within production happen via audited and verified scripts with no people
involved in making direct changes themselves.
Make teams responsible and allow audits for changes to their service via a trust and verify
basis. Verification can be achieved through audit logs and development changes logged into
something, such as SCM, e.g., Git, Subversion, ClearCase.

Separation of Duties and Enforcement via RBAC and IAM - A major job for auditors and security
architects is making sure there is a clear separation of who can do what in addition to where and
when especially in terms of service deployment and development. Even within a single team
responsible for a service there are clearly defined roles people take. The idea is not to lock down or
unnecessarily hamper the individuals from doing their jobs but to give them the minimum set of
permissions they need to achieve their goals. This will mean that they will be highly empowered
within the areas they are responsible for. The scope and grant of capabilities can be managed by
linking existing IAM systems and defining roles for each unique stage (development, staging, and
production).

Specific best practices:

misadministration and mistakes, the two leading causes of security breaches and unexpected
operational downtime. Secondly, automation removes people from the process. It makes them
monitors of the process, responding to process failures allowing a speed boost for security
activities, and making sure that the agility of DevOps environments isn’t impacted.

When a security platform’s capabilities like IAM, firewalling, vulnerability scanning, and AST
(application security testing) are available through a programmable interface, the integration and
automation of these controls are easily within an automated DevOps pipeline. Security teams
within an organization can now set policies that can be standardized and applied organization-
wide.

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Train developers in secure coding best practices and write resilient code that sanitizes input
and blocks common attack patterns, such as buffer overflows, SQL injection, and cross-site
scripting.
Develop a simple threat-and-risk model assessment tool and implement it in planning and
design. Base the level of threat modeling on the risk of the application. Applications handling
sensitive data or those directly accessing the internet should require deeper threat modeling
and collaboratively involve information security.
Plan to mask, de-identify or synthesize data used in development for testing. Do not use raw,
sensitive production data in development.

Developer training should be conducted for basic security best practices, and periodic
communication around changes to these policies needs to be circulated. A list of basic security
policies can include things like input sanitization and encryption of communication and data.

Specific best practices:

Scan Custom Code, Applications, and APIs - Any custom code written should be scanned for
possible security vulnerabilities during development. Current tooling for traditional static
application security testing (SAST) and dynamic application security testing (DAST) is not suited
for the scale DevSecOps needs. They are too heavyweight and need a qualified security
professional to run them. There is a new breed of lightweight tools that integrate directly with a
developer's IDE and allow for a quick check of security as a code is written. In addition to tools like
these, automated scanning and security testing software should be a part of the continuous
testing pipeline. Interactive application security testing (IAST) is a great option if the platform the
application is being developed on supports instrumentation (Java, .Net, PHP). IAST is a great fit for
the highly-automated testing needed for DevSecOps. A substitute for IAST is application security
testing (AST) tools. Tools that can be driven via automation should be preferred.

Is sensitive data being handled?
What type of sensitive data?
Are communications being encrypted?
Is data at rest being encrypted?

Simplify Risk and Threat Modelling for Applications - A standard best practice for DevSecOps
has at least a basic risk-based threat model. An easy way to start is to have a simple
questionnaire so development teams can assess the risk of the service they are developing at a
high level. A sample questionnaire can include questions like:

Evaluate and adopt IAST for applications that support it and favor solutions using self-
inducers for automated testing.
Plan to fully automate any traditional static or dynamic tools or services used. For example,
DevOps toolchain scripting tools can invoke automated testing. Do not make developers leave
their native environment and toolchains.

Specific best practices:

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Prioritize OSS software module identification and vulnerability scanning in development.
Scan all applications, system images, virtual machines, and containers in development for
unknown, embedded, or vulnerable OSS components in the operating system, application
platform, and the application itself.
Implement an "OSS firewall" to prevent developers from downloading known vulnerable code
from Maven, GitHub, and other OSS code repositories by the policy.

Scan Open Source Dependencies for Issues - Most modern applications can be described as
assembled vs. being built from scratch. Developers rely on many Open Source libraries and
frameworks to accelerate the building of their applications. This is a problem when there are
vulnerabilities with these open-source libraries and frameworks. All dependencies should be
scanned and vetted for vulnerabilities during the build process and flagged for review and
remediation.

Specific best practices:

If SAST and DAST solutions are used, require vendors to support differential scans that test
only the modified code and downstream-impacted modules.
Acknowledge and accept that having zero vulnerabilities isn’t possible. Reduce false positives
(albeit with a risk of higher false negatives) and trim the output of AST tools and services to
focus developers first on the highest severity and highest confidence vulnerabilities. Favour
AST scanning tools and services that use machine learning and collective intelligence to trim
results to only the highest confidence results.
By policy, don’t allow custom code with known critical vulnerabilities to enter production.
Accept that vulnerabilities that represent lower levels of risk may or may not be addressed in
future iterations. Approaches that identify and accept manageable risks are necessary.
Work with DevOps managers to measure and motivate development teams to produce code
with fewer vulnerabilities. Make security metrics a part of code quality metrics and hold
development teams accountable.

Scanning for Vulnerabilities and Configuration at the Source – Development - The previous
sections scan for discovered and known vulnerabilities in custom code and Open Source
dependencies. As development continues and packages are built and integrated, it becomes
important to scan the entire content of images (vms, amis, or containers). This scanning should be
built into the build pipeline and should be automated. These scans should also target the scanning
of the configuration of the OS and application platforms and compare them to the best practices
for that platform’s secure configuration and hardening. An estimate from Gartner notes that
through 2020, 99% of exploited vulnerabilities will continue to be known for at least one year.
Finding these issues at the source during build time prevents them from reaching production.

Architect DevOps processes to automatically scan the contents of all system images, including
the base OS, Architect DevOps processes to automatically scan the contents of all system
images, including the base OS, application platform, and all containers for known

Specific best practices:

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

vulnerabilities and configuration issues as part of the continuous integration process. By
policy, don’t allow systems to leave development with known critical vulnerabilities.
Require developers to remove unnecessary modules and harden all systems to industry
standard best practices.
Integrate with anti-malware scanners (such as VirusTotal), network sandboxing, and
algorithmic malware detection (such as Cylance) to scan systems to ensure the malicious code
hasn’t been introduced to the image during the development process.

Expand the Definition of Sensitive Code to Include Scripts, Recipes, Templates, and Layers -
DevOps promotes a process of Infrastructure as a code. This allows you to version audit and
automate the deployment and configuration of infrastructure, essentially making your
infrastructure programmable. The first strategy talks about making security tools programmable.
Since infrastructure is being treated as code, these artifacts need to have security coding
principles applied to them. This means that the templates, scripts, recipes, and blueprints need to
be secured and audited. We’ve discussed how automation can reduce the chance of a mistake,
but a poorly written script can magnify a mistake if released into production. An example of this is
a recent S3 outage that was caused by an engineer mistakenly removing production servers
instead of replicas. This action through the script caused Amazon’s S3 service to grind to a halt.
The script didn’t have checks or rate limiting around how many servers it could affect. Incidents
like these drive home the need to make sure that configuration files and scripts, like source code,
need to be scanned for mistakes, possible vulnerabilities, and excessive risk. Earlier, we discussed
how high levels of automation can reduce the chance of a mistake. All configurations that can be
expressed in text files should be held in a central repository like Git that allows changes to these
configurations to be recorded. Git can record not only what change was made but also when and
by whom. Eventually, all infrastructure should be treated like source code with version control
rollback audit, logging, and alerting based on usage. Making this the organizational standard
means that no changes to infrastructure can be made without being recorded and audited. This
process will be valuable to auditors and get their buy-in in implementing a DevOps expansion to
not just the application but also the infrastructure.

Ensure that DevOps teams have implemented good version control practices and tools to
maintain clear accountability and traceability for all the application software deployed into the
live environment.
Extend the scope of the version control and automated deployment tools to the configuration,
infrastructure setup, and monitoring configuration.
Use automation scripts to deploy to the staging environment for final tests (maybe an
automated test in advanced DevOps environments).
Scan scripts for errors and embedded risks, such as embedded credentials, encryption keys,
API keys, and so on, that represent a significant and avoidable risk.

Specific best practices:

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Use Whitelisting on Production Systems, Including Container-Based Implementations
Leveraging Whitelisting in Production - One of the most powerful security controls for a workload
is whitelisting and subsequent monitoring and enforcement of all interactions. Whitelisting to
prevent anything not explicitly listed as safe prevents the running of malicious files and
workloads. Whitelisting can extend well beyond what is allowed to run on a system. This
technique can be used to whitelist network connectivity, user access, administrative access, and
file system access. Historically this has been difficult to achieve, but with the automation of
infrastructure through DevOps configuration tools, this is now straightforward. The declarative
nature of DevOps templates lends itself really well to whitelisting.

Implement system integrity measurement on systems as they are booted, including the
hardware-based root of trust measurements of the basic input/output system, bootloader,
hypervisor, and OS on systems you own.
Store VMs at rest encrypted and hashed, if VMs are used in the DevSecOps workflow. Verify
against tampering at boot.
Use a container management system (if containers are used) that supports hashing or other
techniques to measure and verify system integrity when loaded.

System Integrity and Configuration Compliance in Production - Let’s move the focus of this paper
to the best practices in production. The priority for any production system is that the infrastructure
and services installed and running are what we need and are configured correctly. Any tampering
with the images against standards introducing vulnerabilities should be detected and isolated.
We should measure as many system elements as we can (H/W, virtualization, images VMs,
Containers). This measurement should extend to the validation of any container assembly layers
used in container management solutions.

Specific best practices:

Don’t Assume Perfect Protection - In this day and age, organizations face advanced and
targeted attacks, and preventing them all isn’t possible. It’s better to assume they will be
compromised and engineer to minimize the impact of such a compromise. This means everything
in your environment needs to be monitored continuously, and any unusual behavior indicative of a
breach should trigger alerts and automated responses. Machine learning and advanced analytic
techniques can be leveraged here to identify patterns and deviations.

Specific best practices:
Disable runtime-signature-based anti-malware scanning and implement a whitelisting model on
server workloads. Antivirus scanning provides little or no value on well-managed servers and
wastes resources in a DevSecOps environment. Automatically configure whitelists from the
declarative sources of DevOps toolchains and containers. Require vendors to support whitelisting
approaches for containers if containers are used.

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

Design for pervasive monitoring of critical applications, user logins/logouts, transactions,
interactions, network activity, and system activity.
Use the monitoring data to establish baselines of “normal” for the application in order to
detect meaningful deviations. Share monitoring data across DevOps or product teams,
platform teams, and security operations center teams, as an unusual activity may be caused
by a hardware failure, software failure, bug, insider threat, or attack.
Deploy deception and decoy services automatically to more easily identify attackers as these
technologies mature over the next several years.

Specific best practices:

Restrict changes to only being made via automated tools and scripts. Disable remote
administration via Secure Shell (SSH) and Remote Desktop Protocol (RDP) to force access via
APIs and scripts.
Adopt an immutable infrastructure mindset (where possible) and automate all changes to the
environment using DevSecOps-style workflows. Out-of-date workloads should simply be
replaced with newer images in an automated, systematic way.
Require privileged access management systems to manage credentialed access in the rare
cases when direct administrative access is needed.

Restrict and Lock Down Access to Production Infrastructure and Services - Making sure that
automated tools are the only way to make changes in production allows the standardization of
remediation and makes all actions auditable. The exclusive use of automated tools also lets you
perform a rollback of any changes attempted. Rapid iteration and immediate feedback for
problems and vulnerabilities at the Development end means your security posture is improved.

Specific best practices:
Information security architects should collaborate with DevOps teams to:

Containers – Security Limitations

While containers aren’t necessary for a DevOps transformation, they are extremely popular
because of the consistency and streamlining they provide for developers as their code moves from
development to production. Containers do introduce several security issues that need to be
acknowledged. Containers share a common OS; this means that isolation is provided by the OS
and not the hypervisor. Network traffic is visible to all containers on the same host OS without the
addition of any additional tools. This means that any successful attack on the OS kernel will
expose all containers on that host. These are why it’s recommended to use containers on
workloads of similar trust levels and use hypervisors as isolation by running the containers within
VMs. Using lean, stripped-down specialty OSes developed to run containers is also recommended.

Conclusion

DevSecOps aims for a goal of having security checks and controls applied transparently and
automatically within a rapid-development automated DevOps pipeline. Shifting security left to

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

start at development makes sure that DevSecOps is effective and it follows the journey of service
throughout its lifecycle. Above all, successful DevSecOps initiatives must remain true to the
original DevOps philosophy: teamwork and transparency, and continual improvement through
continual learning.

