
This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

QA Automation Using
Pytest

OPCITO TECHNOLOGIES

About The Customer

The client is a leading software provider
for delivering enterprise applications in
data centers and cloud. The client has
services and products around load
balancing, application analytics, and
security for data centers and the cloud.

How Opcito Helped

The initial challenge was to design the test infrastructure that could reuse existing
functionality/infrastructure written for Robot Framework to reduce efforts during the conversion.
In Robot Framework, we usually have a separate test case for each scenario we want to
automate. In Robot Framework test suites, we found that most test cases were testing the same
functionality/scenario using different inputs. Opcito reduced the code for a number of test cases
using pytest.mark.parametrize decorator, which enabled the parameterization of arguments for
a test function.

Opcito leveraged pytest fixtures to replace the setup and teardown functionality by setting its
scope to the module or using setup() and teardown() functions. After the yield statement in the
fixture, all code serves as a teardown. Similarly, the test setup and teardown were replaced by
setting the scope of the fixture to function.

We could have also used pytest fixtures as function arguments in this case. There was no need
to change most of the functionality/infra that was written in Python. We generated the reports
in HTML formats by using pytest HTML plugin.

Business Challenge

The client approached Opcito to convert their
existing test suites, which were written in Robot
Framework, into pytest. The main objective was to
convert these test suites by utilizing the advantages
from pytest, like parameterization and a wide range
of plugins available with minimum effort.

MODULAR DESIGN

Modular fixtures make it easy to modify or add assertions
because test cases are reduced in the pytest functions
compared to Robot Framework. By taking advantage of
pytest.mark.parametrize decorator, adding an extra scenario is
just a matter of adding the additional input tuple

CUSTOM ASSERTS
Pytest allows the use of standard Python assert to verify
expectations and values in Python tests. User can also custom
assertion using the pytest_assertrepr_compare hook

EXECUTION TIME
Execution time reduced drastically (35 to 40%) compared to the
Robot Framework test suite

PLUGINS Available plugins and the provision to design own plugins

This document is proprietary and confidential. No part of this document may be disclosed in any manner to

a third party without the prior written consent of Opcito Technologies.

India office +91 (20) 6712 4100 US office +1 (650) 772 4442

PYTEST

ROBOT

At Opcito, we believe in designing transformational solutions for our customers, start-ups,
and enterprises, with our ability to unify quality, reliability, and cost-effectiveness at any
scale. Our core work culture focuses on adding material value to your products by
leveraging best practices in DevOps, like continuous integration, continuous delivery, and
automation, coupled with disruptive technologies like containers, serverless computing,
and microservice-based architectures. We also believe in high standards for quality with a
zero-bug policy and zero downtime deployment approach.

About Opcito

Benefits

Technologies, Tools,
and Platforms used

